Abstract
Nanoparticles are the simplest form of structure, having sizes ranging from 1 to 100 nm and can provide considerably high surface areas through rational design. Their size, shape and structure are responsible for their high reactivity and strength. In the last few decades, nanoparticles have been widely used in many dosage forms due to their excellent solubility, less size and better penetrability. They have attained prominence in various technological advancements because their properties can be tuned as desired via precisely controlling the size, shape, synthesis conditions, and appropriate functionalization. Due to these unique properties, Nanoparticles have acquired a substantial global market in various commercial and domestic applications, including catalysis, imaging, medical applications, sports equipment, sensors, energy-based research, and environmental applications. Due to the increased growth of the production of nanoparticles and their industrial applications, issues relating to toxicity are inevitable. Several reports are available on the benefits of these nanomaterials in various sectors, but relatively more minor literature is available on their effect on the environment and human health. Several heavy metal nanoparticles are reported to be so rigid and stable that their degradation is not readily achievable, leading to much environmental toxicity. This review discusses a brief history, various applications and the possible fate of the Nanoparticles after use. In particular, we describe how Nanoparticles affect the environment, natural resources, natural micro-flora and humankind. It also describes several techniques currently being used to remove nanoparticles.
References
Hulla JE, Sahu SC, Hayes AW. Nanotechnology: History and future. Human & Experimental Toxicology. 2015;34(12):1318-1321. DOI: 10.1177/0960327115603588.
Kweinor Tetteh E, Rathilal S. Application of biomagnetic nanoparticles for biostimulation of biogas production from wastewater treatment. Materials Today: Proceedings. 2021;45:5214-5220. DOI: 10.1016/j.matpr.2021.01.720.
Pandya HN, Parikh SP, Shah M. Comprehensive review on application of various nanoparticles for the production of biodiesel. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 2022;44(1):1945-1958. DOI: 10.1080/15567036.2019.1648599.
Global Industry Analysts Inc. Global Industry Analysts Predicts the World Industrial Access Control Market to Reach $1.4 Billion by 2026. 2022 [updated Jun 27, 2022]. Available from: https://www.prnewswire.com/news-releases/global-industry-analysts-predicts-the-world-industrial-access-control-market-to-reach-1-4-billion-by-2026--301574766.html.
Javed Z, Dashora K, Mishra M, D. Fasake V, Srivastva A. Effect of accumulation of nanoparticles in soil health- a concern on future. Frontiers in Nanoscience and Nanotechnology. 2019;5(2). DOI: 10.15761/FNN.1000182.
Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: a review. Journal of Animal Science and Biotechnology. 2019;10(1):57. DOI: 10.1186/s40104-019-0368-z.
Stark WJ, Stoessel PR, Wohlleben W, Hafner A. Industrial applications of nanoparticles. Chemical Society Reviews. 2015;44(16):5793-5805. DOI: 10.1039/C4CS00362D.
Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases. 2007;2(4):MR17-MR71. DOI: 10.1116/1.2815690.
Horikoshi S, Serpone N. Introduction to Nanoparticles. In: Microwaves in Nanoparticle Synthesis: Fundamentals and Applications. John Wiley & Sons, Ltd; 2013. p. 1-24.
Amodeo J, Pizzagalli L. Modeling the mechanical properties of nanoparticles: a review. Comptes Rendus Physique. 2021;22(S3):35-66. DOI: 10.5802/crphys.70.
Bello SA, Agunsoye JO, Hassan SB. Synthesis of coconut shell nanoparticles via a top down approach: Assessment of milling duration on the particle sizes and morphologies of coconut shell nanoparticles. Materials Letters. 2015;159:514-519. DOI: 10.1016/j.matlet.2015.07.063.
Baig N, Kammakakam I, Falath W. Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges. Materials Advances. 2021;2(6):1821-1871. DOI: 10.1039/D0MA00807A.
Khan I, Saeed K, Khan I. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry. 2019;12(7):908-931. DOI: 10.1016/j.arabjc.2017.05.011.
Ijaz I, Gilani E, Nazir A, Bukhari A. Detail review on chemical, physical and green synthesis, classification, characterizations and applications of nanoparticles. Green Chemistry Letters and Reviews. 2020;13(3):223-245. DOI: 10.1080/17518253.2020.1802517.
Niknejad F, Nabili M, Daie Ghazvini R, Moazeni M. Green synthesis of silver nanoparticles: Advantages of the yeast Saccharomyces cerevisiae model. Current Medical Mycology. 2015;1(3):17-24. DOI: 10.18869/acadpub.cmm.1.3.17.
Dasgupta D, Bandhu S, Adhikari DK, Ghosh D. Challenges and prospects of xylitol production with whole cell bio-catalysis: A review. Microbiological Research. 2017;197:9-21. DOI: 10.1016/j.micres.2016.12.012.
Ben Tahar I, Fickers P, Dziedzic A, Płoch D, Skóra B, Kus-Liśkiewicz M. Green pyomelanin-mediated synthesis of gold nanoparticles: modelling and design, physico-chemical and biological characteristics. Microbial Cell Factories. 2019;18(1):210. DOI: 10.1186/s12934-019-1254-2.
Naseer M, Aslam U, Khalid B, Chen B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Scientific Reports. 2020;10(1):9055. DOI: 10.1038/s41598-020-65949-3.
Nasrollahzadeh M, Sajjadi M, Dadashi J, Ghafuri H. Pd-based nanoparticles: Plant-assisted biosynthesis, characterization, mechanism, stability, catalytic and antimicrobial activities. Advances in Colloid and Interface Science. 2020;276:102103. DOI: 10.1016/j.cis.2020.102103.
Rahmani R, Gharanfoli M, Gholamin M, Darroudi M, Chamani J, Sadri K, et al. Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceramics International. 2020;46(3):3051-3058. DOI: 10.1016/j.ceramint.2019.10.005.
Pal K, Chakroborty S, Nath N. Limitations of nanomaterials insights in green chemistry sustainable route: Review on novel applications. Green Processing and Synthesis. 2022;11(1):951-964. DOI: doi:10.1515/gps-2022-0081.
Ying S, Guan Z, Ofoegbu PC, Clubb P, Rico C, He F, et al. Green synthesis of nanoparticles: Current developments and limitations. Environmental Technology & Innovation. 2022;26:102336. DOI: https://doi.org/10.1016/j.eti.2022.102336.
Miu BA, Dinischiotu A. New Green Approaches in Nanoparticles Synthesis: An Overview. Molecules. 2022;27(19):6472, https://www.mdpi.com/1420-3049/27/19/6472.
Saini A, Panwar D, Panesar PS, Chandra P. Potential of Nanotechnology in Food Analysis and Quality Improvement. In: Chandra P, Panesar PS, editors. Nanosensing and Bioanalytical Technologies in Food Quality Control. Singapore: Springer; 2022. p. 169-194.
Shnoudeh AJ, Hamad I, Abdo RW, Qadumii L, Jaber AY, Surchi HS, et al. Chapter 15 - Synthesis, Characterization, and Applications of Metal Nanoparticles. In: Tekade RK, editor. Biomaterials and Bionanotechnology. Advances in Pharmaceutical Product Development and Research. Academic Press; 2019. p. 527-612.
Zhuang S, Lee ES, Lei L, Nunna BB, Kuang L, Zhang W. Synthesis of nitrogen-doped graphene catalyst by high-energy wet ball milling for electrochemical systems. International Journal of Energy Research. 2016;40(15):2136-2149. DOI: 10.1002/er.3595.
Xue J, Xie J, Liu W, Xia Y. Electrospun Nanofibers: New Concepts, Materials, and Applications. Accounts of Chemical Research. 2017;50(8):1976-1987. DOI: 10.1021/acs.accounts.7b00218.
Son HH, Seo GH, Jeong U, Shin DY, Kim SJ. Capillary wicking effect of a Cr-sputtered superhydrophilic surface on enhancement of pool boiling critical heat flux. International Journal of Heat and Mass Transfer. 2017;113:115-128. DOI: 10.1016/j.ijheatmasstransfer.2017.05.055.
Zhang J, Chaker M, Ma D. Pulsed laser ablation based synthesis of colloidal metal nanoparticles for catalytic applications. Journal of Colloid and Interface Science. 2017;489:138-149. DOI: 10.1016/j.jcis.2016.07.050.
Deokar G, Jin J, Schwingenschlögl U, Costa PMFJ. Chemical vapor deposition-grown nitrogen-doped graphene’s synthesis, characterization and applications. npj 2D Materials and Applications. 2022;6(1):1-17. DOI: 10.1038/s41699-022-00287-8.
Dong Y, Du X-q, Liang P, Man X-l. One-pot solvothermal method to fabricate 1D-VS4 nanowires as anode materials for lithium ion batteries. Inorganic Chemistry Communications. 2020;115:107883. DOI: 10.1016/j.inoche.2020.107883.
Parashar M, Shukla VK, Singh R. Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications. Journal of Materials Science: Materials in Electronics. 2020;31(5):3729-3749. DOI: 10.1007/s10854-020-02994-8.
Lone IH, Radwan NRE, Aslam J, Akhter A. Concept of Reverse Micelle Method For the Synthesis of Nano-Structured Materials. Current Nanoscience. 2019;15(2):129-136. DOI: 10.2174/1573413714666180611075115.
Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MdP, Acosta-Torres LS, et al. Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology. 2018;16(1):71. DOI: 10.1186/s12951-018-0392-8.
Paladini F, Pollini M. Antimicrobial Silver Nanoparticles for Wound Healing Application: Progress and Future Trends. Materials. 2019;12(16):2540. DOI: 10.3390/ma12162540.
Shamaila S, Zafar N, Riaz S, Sharif R, Nazir J, Naseem S. Gold Nanoparticles: An Efficient Antimicrobial Agent against Enteric Bacterial Human Pathogen. Nanomaterials. 2016;6(4):71. DOI: 10.3390/nano6040071.
Vijai Anand K, Anugraga AR, Kannan M, Singaravelu G, Govindaraju K. Bio-engineered magnesium oxide nanoparticles as nano-priming agent for enhancing seed germination and seedling vigour of green gram (Vigna r adiata L.). Materials Letters. 2020;271:127792. DOI: 10.1016/j.matlet.2020.127792.
Sharifi M, Faryabi K, Talaei AJ, Shekha MS, Ale-Ebrahim M, Salihi A, et al. Antioxidant properties of gold nanozyme: A review. Journal of Molecular Liquids. 2020;297:112004. DOI: 10.1016/j.molliq.2019.112004.
Avestan S, Ghasemnezhad M, Esfahani M, Byrt CS. Application of Nano-Silicon Dioxide Improves Salt Stress Tolerance in Strawberry Plants. Agronomy. 2019;9(5):246. DOI: 10.3390/agronomy9050246.
Athanassiou CG, Kavallieratos NG, Benelli G, Losic D, Usha Rani P, Desneux N. Nanoparticles for pest control: current status and future perspectives. Journal of Pest Science. 2018;91(1):1-15. DOI: 10.1007/s10340-017-0898-0.
Deka B, Babu A, Baruah C, Barthakur M. Nanopesticides: A Systematic Review of Their Prospects With Special Reference to Tea Pest Management. Frontiers in Nutrition. 2021;8:686131. DOI: 10.3389/fnut.2021.686131.
D D, Rajendran S, Naushad M. Recent Trends in Nanomaterials for Sustainable Energy. In: Rajendran S, Naushad M, Balakumar S, editors. Nanostructured Materials for Energy Related Applications. Environmental Chemistry for a Sustainable World. Cham: Springer International Publishing; 2019. p. 1-20.
Herbaut M, Siaj M, Claverie JP. Nanomaterials-Based Water Splitting: How Far Are We from a Sustainable Solution? ACS Applied Nano Materials. 2021;4(2):907-910. DOI: 10.1021/acsanm.1c00246.
Feng X, Zhang Y, Kang L, Wang L, Duan C, Yin K, et al. Integrated energy storage system based on triboelectric nanogenerator in electronic devices. Frontiers of Chemical Science and Engineering. 2021;15(2):238-250. DOI: 10.1007/s11705-020-1956-3.
Al Ghabban A, Al Zubaidi AB, Jafar M, Fakhri Z. Effect of Nano SiO2 and Nano CaCO3 on The Mechanical Properties, Durability and flowability of Concrete. IOP Conference Series: Materials Science and Engineering. 2018;454:012016. DOI: 10.1088/1757-899X/454/1/012016.
Panin SV, Nguyen DA, Buslovich DG, Alexenko VO, Pervikov AV, Kornienko LA, et al. Effect of Various Type of Nanoparticles on Mechanical and Tribological Properties of Wear-Resistant PEEK + PTFE-Based Composites. Materials. 2021;14(5):1113. DOI: 10.3390/ma14051113.
Zhang M. Removal of nanoparticles by flotation processes [phdthesis]: INSA de Toulouse; 2015.
Tran T-K, Nguyen M-K, Lin C, Hoang T-D, Nguyen T-C, Lone AM, et al. Review on fate, transport, toxicity and health risk of nanoparticles in natural ecosystems: Emerging challenges in the modern age and solutions toward a sustainable environment. Science of The Total Environment. 2024;912:169331. DOI: https://doi.org/10.1016/j.scitotenv.2023.169331.
Kah M. Nanopesticides and Nanofertilizers: Emerging Contaminants or Opportunities for Risk Mitigation? Frontiers in Chemistry. 2015;3. DOI: 10.3389/fchem.2015.00064.
Rajput V, Minkina T, Mazarji M, Shende S, Sushkova S, Mandzhieva S, et al. Accumulation of nanoparticles in the soil-plant systems and their effects on human health. Annals of Agricultural Sciences. 2020;65(2):137-143. DOI: https://doi.org/10.1016/j.aoas.2020.08.001.
Ali S, Mehmood A, Khan N. Uptake, Translocation, and Consequences of Nanomaterials on Plant Growth and Stress Adaptation. Journal of Nanomaterials. 2021;2021(1):6677616. DOI: https://doi.org/10.1155/2021/6677616.
Noori A, Hasanuzzaman M, Roychowdhury R, Sarraf M, Afzal S, Das S, et al. Silver nanoparticles in plant health: Physiological response to phytotoxicity and oxidative stress. Plant Physiology and Biochemistry. 2024;209:108538. DOI: https://doi.org/10.1016/j.plaphy.2024.108538.
Liu Y, Tourbin M, Lachaize S, Guiraud P. Silica Nanoparticle Separation from Water by Aggregation with AlCl3. Industrial & Engineering Chemistry Research. 2012;51(4):1853-1863. DOI: 10.1021/ie200672t.
Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, et al. Toxicity of Nanoparticles on the Reproductive System in Animal Models: A Review. Frontiers in Pharmacology. 2017;8. DOI: 10.3389/fphar.2017.00606.
Gwinn Maureen R, Vallyathan V. Nanoparticles: Health Effects—Pros and Cons. Environmental Health Perspectives. 2006;114(12):1818-1825. DOI: 10.1289/ehp.8871.
Li X, Wang L, Fan Y, Feng Q, Cui F-z. Biocompatibility and Toxicity of Nanoparticles and Nanotubes. Journal of Nanomaterials. 2012;2012(1):548389. DOI: 10.1155/2012/548389.
Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chemical Society Reviews. 2017;46(14):4218-4244. DOI: 10.1039/C6CS00636A.
Richards CJ, Burgers TCQ, Vlijm R, Roos WH, Åberg C. Rapid Internalization of Nanoparticles by Human Cells at the Single Particle Level. ACS Nano. 2023;17(17):16517-16529. DOI: 10.1021/acsnano.3c01124.
Huang Y-W, Cambre M, Lee H-J. The Toxicity of Nanoparticles Depends on Multiple Molecular and Physic ochemical Mechanisms. International Journal of Molecular Sciences. 2017;18(12):2702. DOI: 10.3390/ijms18122702.
Bahadar H, Maqbool F, Niaz K, Abdollahi M. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iranian Biomedical Journal. 2016;20(1):1-11. DOI: 10.7508/ibj.2016.01.001.
Khalili Fard J, Jafari S, Eghbal MA. A Review of Molecular Mechanisms Involved in Toxicity of Nanoparticles. Advanced Pharmaceutical Bulletin. 2015;5(4):447-454. DOI: 10.15171/apb.2015.061.
Abbasi R, Shineh G, Mobaraki M, Doughty S, Tayebi L. Structural parameters of nanoparticles affecting their toxicity for biomedical applications: a review. Journal of Nanoparticle Research. 2023;25(3):43. DOI: 10.1007/s11051-023-05690-w.
Egbuna C, Parmar VK, Jeevanandam J, Ezzat SM, Patrick-Iwuanyanwu KC, Adetunji CO, et al. Toxicity of Nanoparticles in Biomedical Application: Nanotoxicology. Journal of Toxicology. 2021;2021(1):9954443. DOI: https://doi.org/10.1155/2021/9954443.
Chen Z, Wang Y, Zhuo L, Chen S, Zhao L, Luan X, et al. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration. Toxicology Letters. 2015;239(2):123-130. DOI: 10.1016/j.toxlet.2015.09.013.
Park E-J, Bae E, Yi J, Kim Y, Choi K, Lee SH, et al. Repeated-dose toxicity and inflammatory responses in mice by oral administration of silver nanoparticles. Environmental Toxicology and Pharmacology. 2010;30(2):162-168. DOI: 10.1016/j.etap.2010.05.004.
Raja G, Kim S, Yoon D, Yoon C, Kim S. 1H NMR Based Metabolomics Studies of the Toxicity of Titanium Dioxide Nanoparticles in Zebrafish (Danio rerio). Bulletin of the Korean Chemical Society. 2018;39(1):33-39. DOI: 10.1002/bkcs.11336.
Chen H, Wang B, Zheng L, Wang H, Wang M, Ouyang H, et al. The effects of orally administered Ag, TiO2 and SiO2 nanoparticles on gut microbiota composition and colitis induction in mice. Nanoimpact. 2017;8:80-88. DOI: 10.1016/j.impact.2017.07.005.
Cho W-S, Kang B-C, Lee JK, Jeong J, Che J-H, Seok SH. Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Particle and Fibre Toxicology. 2013;10(1):9. DOI: 10.1186/1743-8977-10-9.
Jo M-R, Bae S-H, Go M-R, Kim H-J, Hwang Y-G, Choi S-J. Toxicity and Biokinetics of Colloidal Gold Nanoparticles. Nanomaterials. 2015;5(2):835-850. DOI: 10.3390/nano5020835.
Vasantharaja D, Ramalingam V, Aadinaath Reddy G. Oral toxic exposure of titanium dioxide nanoparticles on serum biochemical changes in adult male Wistar rats. Nanomedicine Journal. 2015;2(1):46-53.
Weldon BA, M Faustman E, Oberdörster G, Workman T, Griffith WC, Kneuer C, et al. Occupational exposure limit for silver nanoparticles: considerations on the derivation of a general health-based value. Nanotoxicology. 2016;10(7):945-956. DOI: 10.3109/17435390.2016.1148793.
Wiemann M, Vennemann A, Blaske F, Sperling M, Karst U. Silver Nanoparticles in the Lung: Toxic Effects and Focal Accumulation of Silver in Remote Organs. Nanomaterials. 2017;7(12):441. DOI: 10.3390/nano7120441.
Hallock MF, Greenley P, DiBerardinis L, Kallin D. Potential risks of nanomaterials and how to safely handle materials of uncertain toxicity. Journal of Chemical Health & Safety. 2009;16(1):16-23. DOI: 10.1016/j.jchas.2008.04.001.
Pallas G, Vijver MG, Peijnenburg WJGM, Guinée J. Life cycle assessment of emerging technologies at the lab scale: The case of nanowire-based solar cells. Journal of Industrial Ecology. 2020;24(1):193-204. DOI: 10.1111/jiec.12855.
Patiño-Ruiz DA, Meramo-Hurtado SI, González-Delgado ÁD, Herrera A. Environmental Sustainability Evaluation of Iron Oxide Nanoparticles Synthesized via Green Synthesis and the Coprecipitation Method: A Comparative Life Cycle Assessment Study. ACS Omega. 2021;6(19):12410-12423. DOI: 10.1021/acsomega.0c05246.
Weyell P, Kurland HD, Hülser T, Grabow J, A. Müller F, Kralisch D. Risk and life cycle assessment of nanoparticles for medical applications prepared using safe- and benign-by-design gas-phase syntheses. Green Chemistry. 2020;22(3):814-827. DOI: 10.1039/C9GC02436K.
Nizam NUM, Hanafiah MM, Woon KS. A Content Review of Life Cycle Assessment of Nanomaterials: Current Practices, Challenges, and Future Prospects. Nanomaterials. 2021;11(12):3324. DOI: 10.3390/nano11123324.
Sackey S, Lee D-E, Kim B-S. Life Cycle Assessment for the Production Phase of Nano-Silica-Modified Asphalt Mixtures. Applied Sciences. 2019;9(7):1315, https://www.mdpi.com/2076-3417/9/7/1315.
Bobba S, Deorsola FA, Blengini GA, Fino D. LCA of tungsten disulphide (WS2) nano-particles synthesis: state of art and from-cradle-to-gate LCA. Journal of Cleaner Production. 2016;139:1478-1484. DOI: 10.1016/j.jclepro.2016.07.091.
Aziz NIHA, Hanafiah MM, Gheewala SH. A review on life cycle assessment of biogas production: Challenges and future perspectives in Malaysia. Biomass and Bioenergy. 2019;122:361-374. DOI: 10.1016/j.biombioe.2019.01.047.
Zhang N, Xiong G, Liu Z. Toxicity of metal-based nanoparticles: Challenges in the nano era. Frontiers in Bioengineering and Biotechnology. 2022;10. DOI: 10.3389/fbioe.2022.1001572.
Liu L, Bai X, Martikainen M-V, Kårlund A, Roponen M, Xu W, et al. Cell membrane coating integrity affects the internalization mechanism of biomimetic nanoparticles. Nature Communications. 2021;12(1):5726. DOI: 10.1038/s41467-021-26052-x.
Opris RV, Toma V, Baciu AM, Moldovan R, Dume B, Berghian-Sevastre A, et al. Neurobehavioral and Ultrastructural Changes Induced by Phytosynthesized Silver-Nanoparticle Toxicity in an In Vivo Rat Model. Nanomaterials. 2022;12(1):58. DOI: 10.3390/nano12010058.
Li J, Yang H, Sha S, Li J, Zhou Z, Cao Y. Evaluation of in vitro toxicity of silica nanoparticles (NPs) to lung cells: Influence of cell types and pulmonary surfactant component DPPC. Ecotoxicology and Environmental Safety. 2019;186:109770. DOI: 10.1016/j.ecoenv.2019.109770.
Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, et al. Pulmonary toxicity of instilled silver nanoparticles: influence of size, coating and rat strain. PloS One. 2015;10(3):e0119726. DOI: 10.1371/journal.pone.0119726.
Kong L, Tang M, Zhang T, Wang D, Hu K, Lu W, et al. Nickel Nanoparticles Exposure and Reproductive Toxicity in Healthy Adult Rats. International Journal of Molecular Sciences. 2014;15(11):21253-21269. DOI: 10.3390/ijms151121253.
Sharma V, Singh P, Pandey AK, Dhawan A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 2012;745(1):84-91. DOI: 10.1016/j.mrgentox.2011.12.009.
Alshatwi AA, Vaiyapuri Subbarayan P, Ramesh E, Al-Hazzani AA, Alsaif MA, Alwarthan AA. Al2O3 Nanoparticles Induce Mitochondria-Mediated Cell Death and Upregulate the Expression of Signaling Genes in Human Mesenchymal Stem Cells. Journal of Biochemical and Molecular Toxicology. 2012;26(11):469-476. DOI: 10.1002/jbt.21448.
Donovan AR, Adams CD, Ma Y, Stephan C, Eichholz T, Shi H. Single particle ICP-MS characterization of titanium dioxide, silver, and gold nanoparticles during drinking water treatment. Chemosphere. 2016;144:148-153. DOI: 10.1016/j.chemosphere.2015.07.081.
Syafiuddin A, Salmiati S, Hadibarata T, Kueh ABH, Salim MR, Zaini MAA. Silver Nanoparticles in the Water Environment in Malaysia: Inspection, characterization, removal, modeling, and future perspective. Scientific Reports. 2018;8(1):986. DOI: 10.1038/s41598-018-19375-1.
Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL. Toxicity of Engineered Nanoparticles in the Environment. Analytical Chemistry. 2013;85(6):3036-3049. DOI: 10.1021/ac303636s.
Turan NB, Erkan HS, Engin GO, Bilgili MS. Nanoparticles in the aquatic environment: Usage, properties, transformation and toxicity—A review. Process Safety and Environmental Protection. 2019;130:238-249. DOI: 10.1016/j.psep.2019.08.014.
Limbach LK, Bereiter R, Müller E, Krebs R, Gälli R, Stark WJ. Removal of Oxide Nanoparticles in a Model Wastewater Treatment Plant: Influence of Agglomeration and Surfactants on Clearing Efficiency. Environmental Science & Technology. 2008;42(15):5828-5833. DOI: 10.1021/es800091f.
Hofman-Caris CHM, Bäuerlein PS, Siegers WG, Mintenig SM, Messina R, Dekker SC, et al. Removal of nanoparticles (both inorganic nanoparticles and nanoplastics) in drinking water treatment – coagulation/flocculation/sedimentation, and sand/granular activated carbon filtration. Environmental Science: Water Research & Technology. 2022;8(8):1675-1686. DOI: 10.1039/D2EW00226D.
Shilpa BS, Akanksha, Kavita, Girish P. Evaluation of Cavtus and Hyacinth Bean Peels as Natural Coagulants. International Journal of Chemical and Environmental Engineering. 2012;3:3. DOI: 10.13140/RG.2.2.31066.98247.
Yao B, Assidjo E, Gueu S, Ado G. Study of the hibiscus esculentus mucilage coagulation–flocculation activity. 2005, https://tspace.library.utoronto.ca/handle/1807/6442.
Sousa VS, Ribau Teixeira M. Removal of a mixture of metal nanoparticles from natural surface waters using traditional coagulation process. Journal of Water Process Engineering. 2020;36:101285. DOI: 10.1016/j.jwpe.2020.101285.
Oliveira HA, Azevedo A, Rubio J. Removal of flocculated TiO2 nanoparticles by settling or dissolved air flotation. Environmental Technology. 2021;42(7):1001-1012. DOI: 10.1080/09593330.2019.1650123.
You Z, Zhuang C, Sun Y, Zhang S, Zheng H. Efficient Removal of TiO2 Nanoparticles by Enhanced Flocculation–Coagulation. Industrial & Engineering Chemistry Research. 2019;58(31):14528-14537. DOI: 10.1021/acs.iecr.9b01504.
Sun Q, Li Y, Tang T, Yuan Z, Yu C-P. Removal of silver nanoparticles by coagulation processes. Journal of Hazardous Materials. 2013;261:414-420. DOI: 10.1016/j.jhazmat.2013.07.066.
Dhandayuthapani B, Mallampati R, Sriramulu D, Dsouza RF, Valiyaveettil S. PVA/Gluten Hybrid Nanofibers for Removal of Nanoparticles from Water. ACS Sustainable Chemistry & Engineering. 2014;2(4):1014-1021. DOI: 10.1021/sc500003k.
Chin C-JM, Chen P-W, Wang L-J. Removal of nanoparticles from CMP wastewater by magnetic seeding aggregation. Chemosphere. 2006;63(10):1809-1813. DOI: 10.1016/j.chemosphere.2005.09.035.
Kiser MA, Westerhoff P, Benn TM, Wang Y, Ryu H, Hristovski K. Potential Removal and Release of Nanomaterials from Wastewater Treatment Plants. Proceedings of the Water Environment Federation. 2010;2010(17):899-905.
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright (c) 2024 Ajit, Diptarka Dasgupta, Snehal (Author)